Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Process Standards			
1.1A Apply mathematics to problems arising in everyday life, society, and the workplace.	1.11A identify the mathematics in everyday situations	*changed "identifying" to "applying" mathematics in everyday situations	
1.1B Use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.	1.11B solve problems with guidance that incorporate the process of understanding the problem, making a plan, carrying out the plan, and evaluating the solution of reasonableness Select or develop and appropriate problem-solving plan or strategy including drawing a picture, looking for a pattern, systemic guessing and checking, or acting it out in order to solve a problem.	* added "evaluating" the problemsolving process * added "analyzing" information * added "justisfying" solutions	
1.1C Select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.	1.11D use tools such as real objects, manipulatives, and technology to solve problems.	* changed the "using" of tools to the "selecting" of tools	
1.1D Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.	1.12A explain and record objects, manipulatives, and technology to solve problems.		

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.1E Create and use representations to organize, record, and communicate mathematical ideas.	1.12A explain and record objects, manipulatives, and technology to solve problems 1.12B relate informal (every day) language to mathematical language and symbols	*added the "creating" and "using" of representaions to communicate mathematical ideas	
1.1F Analyze mathematical relationships to connect and communicate mathematical ideas.	1.12A explain and record objects, manipulatives, and technology to solve problems 1.12B relate informal (every day) language to mathematical language and symbols	*changed "relating" to "analyzing" mathematical relationship to communicate ideas	
1.1G Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.	1.13 justify his or her thinking using objects, words, pictures, numbers, and technology	*added "displaying" and "explaining" of mathematical ideas	
Number and Operations			
1.2A recognize instantly the quantity of structured arrangements	New TEK		such as seen on a die or a ten frame
1.2B Use concrete and pictorial models to compose and decompose numbers up to 120 in more than one way as so mnay hundreds, so many tens, and so many ones.	1.1B Create sets of tens \& ones using concrete objects to describe, compare, \& order whole numbers	Added the use of pictorial models Extended representations of numbers from 99 to 120 Compose and decompose numbers	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.2C Use objects, pictures, and expanded and standard forms to represent numbers up to 120	1.1D Read \& write numbers to 99 to describe sets of concrete objects	Added the use of pictures Added the use of expanded and standard forms of numbers Extended representations of 99 to 120	
1.2D Generate a number that is greater than or less than a given whole number up to 120 .	1.1A Compare \& order whole numbers up to 99 (less than, greater than, or equal to) using sets of concrete objects \& pictorial models	Extended comparisons from 99 to 120 Deleted the term equal Deleted use of objects and pictorial models although found in process standard 1.1C - replaced "comparing/ordering" of numbers that are greater than or less than a given number	
1.2E Use place value to compare whole numbers up to 120 using comparative language.	1.5C Compare and order whole numbers using place value	Changed strand from "Patterns, Relationships, and Algebraic Thinking" to "number and Operations" Define comparisons through 120 Added to the use of comparative language.	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.2F Order whole numbers up to 120 using place value and open number line.	1.1A Compare \& order whole numbers up to 99 (less than, greater than, or equal to) using sets of concrete objects \& pictorial models	Extended comparisons from 99 to 120 Added the use of open number lines Deleted the use of objects and pictorial models although found in process standard 1.1C	
1.2G Represent the comparison of two numbers to 100 using the symbols $>,<$, or $=$.	1.1A Compare \& order whole numbers up to 99 (less than, greater than, or equal to) using sets of concrete objects \& pictorial models	Moved from grade 2 to grade 1; deleted the use of objects andpictorial models although found in process standard (see 1.1C)	
1.3A Use concrete and pictorial models to determine the sum of a multiple of 10 and a one digit number in problems up to 99	New TEKS		
1.3B Use objects and pictorial models to solve word problems involving joining, separating, and comparing sets within 20 and unknowns as any one of the terms in the problem such as $2+4=[] ; 3+$ []=7; and 5 = []-3	1.3A Model \& create addition \& subtraction problem situations with concrete objects \& write corresponding number sentences 1.3B use concrete and pictorial models to apply basic addition and subtraction facts (up to 9+9=18 and 18-9=9)	Still using objects and pictures to solve word problems of addition and subtraction up to 20 . In the number sentences any of the terms can be unknown.	
1.3C Compose 10 with two or more addends with and without concrete objects	New TEKS		

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.3D Apply basic fact strategies to add and subtract within 20, including making 10 and decomposing a number leading to a 10	$1.3 B$ Use concrete \& pictorial subtraction facts (up to $9+9=18$ $18-9=9$).	Changed strand from "Patterns, Relationships, and Algebraic Thinking" to "Number and Operations" Defined a strategy (i.e. compose 10	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.4B Write a number with the cent symbol to describe the value of a coin.		Moved from Grade 2	
1.4C Use relationships to count by $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s to determine the value of a collection of pennies, nickels, and /or dimes.		Moved from Grade 2	
Algebraic Reasoning:			
1.5 A recite numbers forward and backward from any given number between 1 and 120	New TEK		
1.5 B skip count by twos, fives, and tens to determine the total number of objects up to 120 in a set;	1.5A Use patterns to skip count by twos, fives, \& tens	Changed strand from "Number, Operation and Quantitative Reasoning" to "Algebraic Reasoning" Extended skip counting to 120 - added the need for skip counting to determine total number of objects	
1.5 C use relationships to determine the number that is 10 more and 10 less than a given number up to 120;	new TEK		
1.5D Represent word problems involving addition and subtraction of whole numbers up to 20 using concrete and pictorial models and number sentences	1.3A Model \& create addition \& subtraction problem situations with concrete objects \& write corresponding number sentences	In the algebraic reasoning section as well	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.5 E understand that the equal sign represents a relationship where expressions on each side of the equal sign represent the same value(s);	new TEK		
1.5 F determine the unknown whole number in an addition or subtraction equation when the unknown may be any one of the three or four terms in the equation; and	new TEK	missing addend	
1.5 G apply properties of operations to add and subtract two or three numbers.	1.5E Identify patterns and related addition and subtraction sentences (fact families to sums to 18) such as $2+3=5,3+2=5,5-2=3,5$ $3=2$	-Deleted the term "Fact Families" however, still important vocabulary -changed the "identifying" of patterns to the "application " of properties of operations to add and subtract	such as if $2+3=5$ is known, then $3+2=5$
Geometry and Measurement:			
1.6A Classify and sort regular and irregular two-dimensional shapes based on attributes using informal geometric language;	1.6C Describe \& identify two- \& three-dimensional geometric figures in order to sort them according to a given attribute using informal \& formal language	Added the use of "irregular" shapes	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.6B Distinguish between attributes that define a two-dimensional or three-dimensional figure and attributes that do not define the shape;		Added the understanding of attributes that do and do not define shape. Deleted three-dimensional geometric figures; however, it can be found in 1.6B and 1.6E -distinguish differences	such as a closed figure with three sides is a triangle or a solid with exactly six rectangular faces is a rectangular prism AND such as orientation or color
1.6C Create two-dimensional figures, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons;	New TEKS		
1.6D identify two-dimensional shapes, including circles, triangles, rectangles, and squares, as special rectangles, rhombuses, and hexagons and describe their attributes using formal geometric language;	1.6 Describe \& identify two- dimensional geometric figures including circles, triangles, rectangles, \& squares (a special type of rectangle);	Added rhombuses and hexagons to specific list of shapes	such as vertex and side Added the use of formal
li.6E identify three-dimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes), and triangular prisms, and describe their attributes using formal geometric language;	1.6B Describe \& identify three- dimensional geometric figures, including spheres, rectangular points) prisms (including cubes), cylinders, \& cones	Added the use of formal geometrical language	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.6F Compose two-dimensional shapes by joining two, three, or four figures to produce a target shape in more than one way if possible;	1.6D Use concrete models to combine two-dimensional geometric figures to make new geometric figures.	Added the use of two or more figures to produce a specific shape. Added the production of a target shape.	
1.6 G partition two-dimensional figures into two and four fair shares or equal parts and describe the parts using words; and 1.6H identify examples and non- examples of halves and fourths.	1.2 A separate a whole into two, three, or four equal parts and use appropriate language to describe the parts such as three out of four equal parts (Number and Operations Strand) -1.2B use appropriate language to describe part of a set such as three out of the eight crayons are red (Number and Operations Strand)		such as circles and rectangles; such as "halves", "half of", "fourths" or "quarters"

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Geometry and Measurement			
1.7A Use measuring tools to measure the length of objects to reinforce the continuous nature of linear measurement;	1.7A Estimate \& measure length using nonstandard units such as paper clips or sides of color tiles	Expected to use non-standard measuring tools for linear measurement -expected to estimate as a component of the process standard 1.1C	such as adding machine tape, ribbon, or string
1.7B Illustrate that the length of an object is the number of same-size units of length that, when laid end-to-end with no gaps or overlaps, reach from one end of the object to the other;		Expected to demonstrate the length of an object using non-standard tools when laid end-to-end with no gaps or overlaps reaching from one end to the other	
1.7C measure the same object/distance with units of two different lengths and describe how and why the measurements differ;	1.7C describe the relationship between the size of the unit $\&$ the number of units needed to measure the length of an object;	Measuring the same object with different non-standard units and -describing why they differ	
1.7D Describe a length to the nearest whole unit using a number and a unit; and	1.7A Estimate \& measure length using nonstandard units such as paper clips or sides of color tiles	Expected to describe the length to the nearest whole non-standard unit	such as five craft sticks
1.7E Tell time to the hour and half hour using analog and digital clocks.	1.8B Read time to the hour \& half hour using analog \& digital clocks	Tell vs read time to the hour and half hour using analog and digital clocks	
Gone	1.7B compare \& order two or more concrete objects according to length (from longest to shortest);	Removed the comparison of measureable attributes from Grade 1 but concept applies in Kindergarten as students compare measureable traits (see K.7B)	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Gone	1.7D compare \& order the area of two or more two-dimensional surfaces (from covers the most to covers the least);	Removed the comparison of measureable attributes from Grade 1 but concept applies in Kindergarten as students compare measureable traits (see K.7B)	
Gone	1.7E compare \& order two or more containers according to capacity (from holds the most to holds the least);	Removed the comparison of measureable attributes from Grade 1 but concept applies in Kindergarten as students compare measureable traits (see K.7B)	
Gone	1.7F compare \& order two or more objects according to weight/mass (from heaviest to lightest);	Removed the comparison of measureable attributes from Grade 1 but concept applies in Kindergarten as students compare measureable traits (see K.7B)	
Gone	1.7G compare \& order two or more objects according to relative temperature (from hottest to coldest).		
Gone	1.8A order three or more events according to duration		
Data Analysis:			
1.8A Collect, sort, and organize data in up to three categories using models/representations such as tally marks or T-charts;	1.9A Collect \& sort data	Limited date to three categories -added the "organizing" of the data -Added examples of the type of models and representations of data (i.e. tally marks or t-charts)	

Grade 1 Texas Math Crosswalk Document

New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
1.8B Use data to create picture and bar-type graphs; and	1.9B Use organized data to construct real object graphs, picture graphs, \& bar-type graphs	Deleted real objects graphs; however applied in process standard (see 1.1C and 1.1D)	
1.8C Draw conclusions and generate and answer questions using information from picture and bar-type graphs	1.10A Draw conclusions \& answer questions using information organized in real-object graphs, picture graphs, \& bar-type graphs	Deleted real objects graphs; however applied in process standard (see 1.1C and 1.1D) added "generating" questions from information within a graph	
Gone	1.10B identify events as certain or impossible such as drawing a red crayon from a bag of green crayons.	Although probability has been removed form the elementary math curriculum, this standard could be a component of "drawing conclusions" from information in a graph (see1.8C)	
Personal Financial Literacy:			
1.9A Define money earned as income;	New TEKS	Define money as earned income	
1.9B Identify income as a means of obtaining goods and services, oftentimes making choices between wants and needs;	New TEKS	identify income as a means of obtaining goods/services and wants/needs	
1.9C Distinguish between spending and saving; and	New TEKS	Spending vs saving	
1.9D Consider charitable giving.	New TEKS	Charitable giving	

