Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Process Standards			
2.1A Apply mathematics to problems arising in everyday life, society, and the workplace	2.12A identify the mathematics in everyday situations		
2.1B Use problem solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, and evaluating the problem solving process and the reasonableness of	2.12B solve problems with guidance that incorporate the process of understanding the problem, making a plan, carrying out a plan, and evaluation the solution of reasonableness		
	2.12C select or develop an appropriate problem-solving plan or strategy including drawing a picture, looking for a pattern, systematic guessing and checking, or acting it out in order to solve a problem		
2.1C Select tools, including real objects, manipulatives, paper/pencil, and technology, as appropriate and techniques, including mental math, estimation, and number sense, as appropriate to solve problems	2.12D use tools such as real objects, manipulatives, and technology to solve problems		
2.1D Communicate mathematical ideas, reasoningm and their implications using multiple representation, including symbols, diagrams, graphs, and language	2.13A explain and record objects, manipulatives, and technology to solve problems		

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
2.1E Create and use representations to organize, record and communicate mathematical ideas.	2.13A explain and record objects, manipulatives, and technology to solve problems		
2.1F Analyze mathematical relationships to connect and communicate mathematical ideas.	2.13B relate informal (every day) language to mathematical language and symbols		
2.1G display, explain and justify methematical ideas and arguments using precise mathematical language in written or oral communication	2.14 justify his or her thinking using objects, words, pictures, numbers, and technology		
Number and Operations:			
2.2A use concrete and pictorial models to compose and decompose numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, and ones	2.1A use concrete models of hundreds, tens, and ones to represent a given whole number (up to 999) in various ways	New: verbage...compose and decompose Up to 1200, which means we have added 1000 in place value Add pictorial models	
2.2B use standard, word, and expanded forms to represent numbers up to 1,200	2.1B use place value to read, write, and describe the value of whole numbers to 999; and	Use standard, word, and expanded forms to represent numbers up to 1,200.	
2.2C generate a number that is greater than or less than a given whole number up to 1,200	New TEK...		
2.2D (D) use place value to compare and order whole numbers up to 1,200 using comparative language, numbers, and symbols (>, <, or =);	2.1C use place value to compare and order whole numbers to 999 and record the comparisons using numbers and symbols (<, =, >).	Compare and order whole numbers up to 1,200 Use comparative language	

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
2.2E locate the position of a given whole number on an open number line	2.8 recognizes that a line can be used to represent a set of numbers and its properties. The student is expected to use whole numbers to locate and name points on a number	Locate the position of a given whole number on an open number line Changed the strand from geometry and spatial reasoning to number and operations	
2.2F name the whole number that corresponds to a specific point on a number line		Locate a specific point on a number line	
2.3A partition objects into equal parts and name the parts, including halves, fourths, and eighths, using words	2.2A use concrete models to represent and name fractional parts of a whole object (with denominators of 12 or less); 2.2B use concrete models to represent and name fractional parts of a set of objects (with denominators of 12 or less) 2.2B use concrete models to represent and name fractional parts of a set of objects (with denominators of 12 or less)	Halves, fourths, eighths on multiple representations (from twelfths to eighths) Add the partition of objects	such as strips, lines, regular polygons, and circles AND such as "one-half" or "threefourths"
2.3B explain that the more fractional parts used to make a whole, the smaller the part; and the fewer the fractional parts, the larger the part;	No old TEK to go with the new	(understanding the meaning of the denominator)	
2.3C use concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole; and	No old TEK to go with the new		such as "one-fourth", "twofourths", "three-fourths", "four-fourths", "five-fourths", or "one and one-fourth" AND four-fourths equals enne whan

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
2.3D identify examples and nonexamples of halves, fourths, and eighths	(no old to go with the new)	Identify examples and nonexamples of halves, fourths, and eighths. (kinder and first go to fourths)	
2.4A recall basic facts to add and subtract within 20 with automaticity	2.3A recall and apply basic addition and subtraction facts (to 18);	Up to 20 with automaticity (automaticity means no manipulatives or fingers	
	2.5C use patterns and relationships to develop strategies to remember basic addition and subtraction facts. Determine patterns in related addition and subtraction number sentences (including fact families) such as $8+9=17,9+8=17,17-$ $8=9$, and $17-9=8$.		
2.4B add up to four two-digit numbers and subtract two digit numbers using mental stratgeies and algorithms based on knowledge of place value and propertis of operations	2.3B model addition and subtraction of two-digit numbers with objects, pictures, words, and numbers s	New TEKS stress more rigor, depth and complexity of adding and subtracting multiple addends	
2.4C solve one step and multi step word problems involving addition and subtraction within 1000 using a variety of strategies based on place value, including algorithms	2.3C select addition or subtraction to solve problems using two-digit numbers, whether or not regrouping is necessary	Extended to within 1000, Added addition and subtraction up to four 2 digit numbers	

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
2.4D generate and solve problem situations for a given mathematical number sentence involving addition and subtraction of whole numbers within 1,000.	2.3B model addition and subtraction of two-digit numbers with objects, pictures, words, and numbers	Students will generate and solve a problem for a "given" number sentence up to 1,000	
2.5A determine the value of a collection of coins up to one dollar	2.3D determine the value of a collection of coins up to one dollar		
2.5B use the cent symbol, dollar sign, and the decimal point to name the value of a collection of coins	2.3E describe how the cent symbol, dollar symbol, and the decimal point are used to name the value of a collection of coins	Money symbols Deleted describing how the cent, dollar, and decimal symbols are used. However, it can be applied to process standards	
2.6A model, create, and describe contextual multiplication situations in which equivalent sets of concrete objects are joined; and	2.4A model, create, and describe multiplication situations in which equivalent sets of concrete objects are joined	Contextual situations of multiplication Example: There are 5 boxes of candy. Each box has 3 pieces of candy. How many pieces of candy in all? $5 \times 3=15$	
2.6B model, create, and describe contextual division situations in which a set of concrete objects is separated into equivalent sets.	2.4B model, create, and describe division situations in which a set of concrete objects is separated into equivalent sets	Contextual situations of division Example: I have 15 pieces of candy. I want to put them equally into 5 boxes. How many candies will go equally into each box? $15 \div 5=$ 3	
Gone	2.2C use concrete models to determine if a fractional part of a whole is closer to $0,1 / 2$, or 1 .	Move the benchmarking of fractional parts to 3rd grade (3.3A, 3.3B)	

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Algebraic Reasoning:			
2.7A determine whether a number up to 40 is even or odd using pairings of objects to represent the number		Determine whether a number up to 40 is even or odd using pairings of objects to represent the number (from first grade)	
2.7B use an understanding of place value to determine the number that is 10 or 100 more or less than a given number up to 1200	2.5A find patterns in numbers such as in a 100s chart	Extend place value to 1200 Defined patterns to be that of adding 10 or 100 and more/less	
	2.5B use patterns in place value to compare and order whole numbers through 999		
2.7C represent and solve addition and subtraction word problems where unknowns may be any one of the terms in the problem.	2.5C use patterns and relationships to develop strategies to remember basic addition and subtraction facts. Determine patterns in related addition and subtraction number sentences (including fact families) such as $8+9=17,9+8=17,17-$ $8=9$, and $17-9=8$.	Added the varying unknown in the number sentence and deleted the term "fact family"	
Gone	2.6A generate a list of paired numbers based on a real-life situation such as number of tricycles related to number of wheels;		
Gone	2.6B identify patterns in a list of related number pairs based on a real-life situation and extend the list		

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Geometry and Measurement			
2.8A create two-dimensional shapes based on given attributes, including number of sides and vertices;	2.7A describe attributes (the number of vertices, faces, edges, sides) of two- and threedimensional geometric figures such as circles, polygons, spheres, cones, cylinders, prisms, and pyramids, etc.	went from "describe" to "create"	
2.8B classify and sort threedimensional solids, including spheres, cones, cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular prisms, based on attributes using formal geometric language	2.7A describe attributes (the number of vertices, faces, edges, sides) of two- and threedimensional geometric figures such as circles, polygons, spheres, cones, cylinders, prisms, and pyramids, etc.	went from "describe" to "classify and sort" Use of formal geometric language	such as vertex, vertices, edge, sides, face, and faces
2.8C classify and sort polygons with 12 or fewer sides according to attributes, including identifying the number of sides and number of vertices;	2.7A describe attributes (the number of vertices, faces, edges, sides) of two- and threedimensional geometric figures such as circles, polygons, spheres, cones, cylinders, prisms, and pyramids, etc.	went from "describe" to "classify and sort" Defind polygons to include 12 or fewer sides	
2.8D compose two-dimensional shapes and three-dimensional solids with given properties or attributes; and	2.7B use attributes to describe how 2 two-dimensional figures or 2 three dimensional geometric figures are alike or different	Composing now instead of describing how	such as build a rectangle out of unit squares or build a rectangular prism out of unit cubes

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
2.8E decompose two-dimensional shapes such as cutting out a square from a rectangle, dividing a shape in half, or partitioning a rectangle into identical triangles and identify the resulting geometric parts	2.7C cut two-dimensional geometric figures apart and identify the new geometric figures formed	Change cutting to decomposing of geometric figures Added "such as" examples for clarity	
2.9A find the length of objects using concrete models for standard units of length	2.9A identify concrete models that approximate standard units of length and use them to measure length	Deleted identifying of concrete models that approximate standard units of measure, however, cognitive expectation is underlying in being able to select and "use" measurement tools as stated in the TEKS	such as the edges of inch tiles or centimeter cubes
2.9B describe the inverse relationship between the size of the unit and the number of units needed to equal the length of an object;		This was a first grade TEK 1.7C	such as the longer the unit, the fewer needed and the shorter the unit, the more needed
2.9C represent whole numbers as distances from any given location on a number line;	2.8 recognizes that a line can be used to represent a set of numbers and its properties. The student is expected to use whole numbers to locate and name points on a number line.	Represent whole numbers as distances from any given location on a number line.	
2.9D determine the length of an object to the nearest marked unit using rulers, yardsticks, meter sticks, or measuring tapes;	New Standard		

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
2.9E determine a solution to a problem involving length, including estimating lengths	2.9A identify concrete models that approximate standard units of length and use them to measure length	Deleted identifying of concrete models that approximate standard units of measure, however, cognitive expectation is in order to "determine" the student must be able to "identify"	
2.9F use concrete models of square units to find the area of a rectangle by covering it with no gaps or overlaps, counting to find the total number of square units, and describing the measurement using a number and the unit;	2.9B select a non-standard unit of measure such as square tiles to determine the area of a twodimensional surface	Added "describing the measurement using a number and the unit	such as 24 square units
2.9G read and write time to the nearest one-minute increment using analog and digital clocks and distinguish between a.m. and p.m	2.10B read and write times shown on analog and digital clocks using five-minute increments	One minute increments and determine am and pm	
Gone	2.9C select a non-standard unit of measure such as a bathroom cup or a jar to determine the capacity of a given container; and		
Gone	2.9D select a non-standard unit of measure such as beans or marbles to determine the weight/mass of a given object.		
Gone	2.10A read a thermometer to gather data	Can be found in science standards for second grade	

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Data Analysis:			
2.10A Explain that the length of a bar in a bar graph or the number of pictures in a pictograph represents the number of data points for a given category	New Standard		
2.10B organize a collection of data with up to four categories using pictographs and bar graphs with intervals of one or more	2.11A construct picture graphs and bar-type graphs	Change from picture graphs to pictographs. Id data from 4 categories. Intervals being defined as one or more Verbage goes from "constructing, to organizing data	
2.10 C Write and solve one-step word problems involving addition and subtraction using data in a bar graphs and a pictographs with intervals of one or more	New Standard	Note: write and solve	
2.10D draw conclusions and make predictions from information in a graph	2.11 B draw conclusions and answer questions based on picture graphs and bar-type graphs	They deleted types of graphs to be used. However bar graphs and pictographs are referenced in 2.10 B	
Gone	2.11C use data to describe events as more likely or less likely such as drawing a certain color crayon from a bag of seven red crayons and three green crayons		

Grade 2 Texas Math Crosswalk Document			
New TX Math Standards	2006-07 Math Standards	Comments	"Such As"
Personal Financial Literacy:			
2.11A calculate how money saved can accumulate into a larger amount over time;		Calculate how money saved can accumulate into a larger amount over time	
2.11Bexplain that saving is an alternative to spending;		Explain that saving is an alternative to spending	
2.11C distinguish between a deposit and a withdrawal;		Distinguish between a deposit and a withdrawal	
2.11D identify examples of borrowing and distinguish between responsible and irresponsible borrowing		Identify examples of borrowing and distinguish between responsible and irresponsible borrowing	
2.11E identify examples of lending and use concepts of benefits and costs to evaluate lending decisions;		Identify examples of lending and use concepts of benefits and costs to evaluate lending decisions	
2.11F differentiate between producers and consumers and calculate the cost to produce a simple item.		Differentiate between producers and consumers and calculate the cost to produce a simple item	such as a shirt, a pitcher of menoade, or a class art project

