Mathematical Process Standards

4.1 Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding.

Tools to Know			Ways to Show			
4.1(A)	4.1(B)	4.1(C)	4.1(D)	4.1(E)	4.1(F)	4.1(G)
apply mathematics to problems arising in everyday life, society, and the workplace	use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution	select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems	communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate	create and use representations to organize, record, and communicate mathematical ideas	analyze mathematical relationships to connect and communicate mathematical ideas	display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication

Knowledge and Skills Statements

4.2	Number and operations. The student applies mathematical process standards to represent, compare, and order whole numbers and decimals and understand relationships related to place value.
4.3	Number and operations. The student applies mathematical process standards to represent and generate fractions to solve problems.
4.4	Number and operations. The student applies mathematical process standards to develop and use strategies and methods for whole number computations and decimal sums and differences in order to solve problems with efficiency and accuracy.
4.5	Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations.
4.6	Geometry and measurement. The student applies mathematical process standards to analyze geometric attributes in order to develop generalizations about their properties.
4.7	Geometry and measurement. The student applies mathematical process standards to solve problems involving angles less than or equal to 180 degrees.
4.8	Geometry and measurement. The student applies mathematical process standards to select appropriate customary and metric units, strategies, and tools to solve problems involving measurement.
4.9	Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data.
4.10	Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security.

Rptg Cat	STAAR	Readiness Standards	Supporting Standards
$\begin{gathered} 1 \\ \text { Numerical Representations and } \\ \text { Relationships } \end{gathered}$	12	4.2(B) represent the value of the digit in whole numbers through $1,000,000,000$ and decimals to the hundredths using expanded notation and numerals 4.2(G) relate decimals to fractions that name tenths and hundredths 4.3(D) compare two fractions with different numerators and different denominators and represent the comparison using the symbols >, $=$, or <	4.2(A) interpret the value of each place-value position as 10 times the position to the right and as one-tenth of the value of the place to its left 4.2(C) compare and order whole numbers to $1,000,000,000$ and represent comparisons using the symbols $>,<$, or $=$ 4.2(D) round whole numbers to a given place value through the hundred thousands place 4.2(E) represent decimals, including tenths and hundredths, using concrete and visual models and money 4.2(F) compare and order decimals using concrete and visual models to the hundredths 4.2(H) determine the corresponding decimal to the tenths or hundredths place of a specified point on a number line 4.3(A) represent a fraction a / b as a sum of fractions $1 / b$, where a and b are whole numbers and $b>0$, including when $a>b$ 4.3(B) decompose a fraction in more than one way into a sum of fractions with the same denominator using concrete and pictorial models and recording results with symbolic representations 4.3(C) determine if two given fractions are equivalent using a variety of methods 4.3(G) represent fractions and decimals to the tenths or hundredths as distances from zero on a number line

Rptg Cat	STAAR	Readiness Standards			Supporting Standards
	16	4.3(E) represent and solve addition with equal denominators u models that build to the nu operations 4.4(A) add and subtract whole nu hundredths place using the 4.4(H) solve with fluency one- and multiplication and division, remainders 4.5(A) represent multi-step proble operations with whole num equations with a letter stan 4.5(B) represent problems using a numerical expressions to g follows a given rule repres values in the resulting sequ sequence	nd subtraction of fractions objects and pictorial line and properties of rs and decimals to the dard algorithm -step problems involving uding interpreting involving the four using strip diagrams and for the unknown quantity put-output table and ate a number pattern that g the relationship of the and their position in the	4.3(F) 4.4(B) 4.4(C) 4.4(D) 4.4(E) 4.4(F) 4.4(G)	evaluate the reasonableness of sums and differences of fractions using benchmark fractions $0,1 / 4,1 / 2$, $3 / 4$, and 1 , referring to the same whole determine products of a number and 10 or 100 using properties of operations and place value understandings represent the product of 2 two-digit numbers using arrays, area models, or equations, including perfect squares through 15 by 15 use strategies and algorithms, including the standard algorithm, to multiply up to a four-digit number by a one-digit number and to multiply a two-digit number by a two-digit number. Strategies may include mental math, partial products, and the commutative, associative, and distributive properties represent the quotient of up to a four-digit whole number divided by a one-digit whole number using arrays, area models, or equations use strategies and algorithms, including the standard algorithm, to divide up to a four-digit dividend by a one-digit divisor round to the nearest 10,100 , or 1,000 or use compatible numbers to estimate solutions involving whole numbers
	15	solve problems related to perimeter and area of rectangles where dimensions are whole numbers classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size determine the approximate measures of angles in degrees to the nearest whole number using a protractor solve problems that deal with measurements of length, intervals of time, liquid volumes, mass, and money using addition, subtraction, multiplication, or division as appropriate		4.6(A) 4.6(B) 4.6(C) 4.7(D) 4.7(E) 4.8(A) 4.8(B)	identify points, lines, line segments, rays, angles, and perpendicular and parallel lines identify and draw one or more lines of symmetry, if they exist, for a two-dimensional figure apply knowledge of right angles to identify acute, right, and obtuse triangles draw an angle with a given measure determine the measure of an unknown angle formed by two non-overlapping adjacent angles given one or both angle measures identify relative sizes of measurement units within the customary and metric systems convert measurements within the same measurement system, customary or metric, from a smaller unit into a larger unit or a larger unit into a smaller unit when given other equivalent measures represented in a table
		SEs Not Included in Assessed Curriculum	4.5(C) use models to determine the formulas for the perimeter of a rectangle ($1+w+1+w$ or $21+2 w$), including the special form for perimeter of a square (4s) and the area of a rectangle ($1 \times w$) 4.7(A) illustrate the measure of an angle as the part of a circle whose center is at the vertex of the angle that is "cut out" by the rays of the angle. Angle measures are limited to whole numbers 4.7(B) illustrate degrees as the units used to measure an angle, where $1 / 360$ of any circle is 1 degree and an angle that "cuts" $n / 360$ out of any circle whose center is at the angle's vertex has a measure of n degrees. Angle measures are limited to whole numbers		
	5	4.9(A) represent data on a frequency table, dot plot, or stem-and-leaf plot marked with whole numbers and fractions		$\begin{aligned} & 4.9(\mathrm{~B}) \\ & 4.10(\mathrm{~A} \\ & 4.10(\mathrm{~B} \\ & 4.10(\mathrm{E}) \end{aligned}$	solve one- and two-step problems using data in whole number, decimal, and fraction form in a frequency table, dot plot, or stem-and-leaf plot distinguish between fixed and variable expenses calculate profit in a given situation describe the basic purpose of financial institutions, including keeping money safe, borrowing money, and lending
		SEs Not Included in Assessed Curriculum	4.10(C) compare the adva 4.10(D) describe how to all	ges and te week	advantages of various savings options allowance among spending, saving, including for college; and sharing
\# Items	$\begin{gathered} 48 \\ \text { (3 Griddable) } \end{gathered}$	29-31 questions from Readiness Standards		17-19 questions from Supporting Standards	

